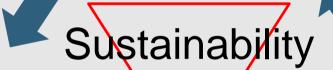

INDUSTRIAL SYSTEM

OF

COMPOSTING TREATMENT



SOLUTION

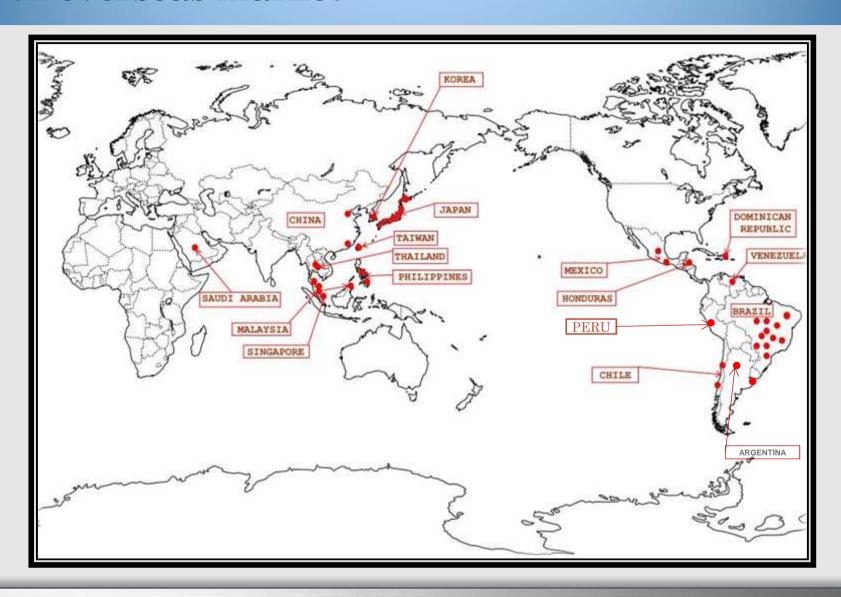
About us

Founded: 1972

Location : Aichi, Japan President: Yuzo Sumiya

Manufacture of compost machinery (Organic

Fertilizer) and machinery for livestock



Corporate mission:

We contribute in protecting the environment by offering the highest standards in technology.

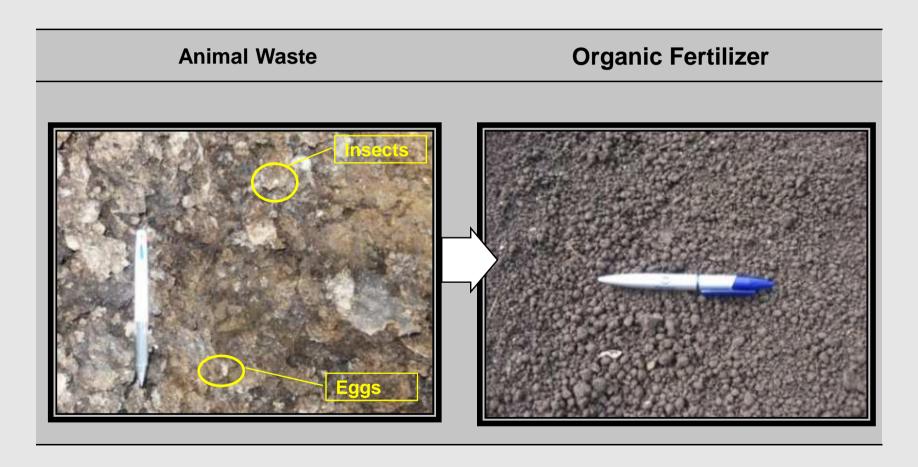
Our overseas market

What do we do?

We can:

- **♦** Assist you in how to manage the raw manure
- ♦ Advise you how you can turn animal wastes into a product benefited

HOW?


Compost

Compost

Method of processing animal excrements

Machinery Specifications

KNLL-6000HW: Continues Method

Capacity: 29-58m³/day (58m³/day, in the case of 2 operations per day)

Model	Rotary	Running Motor	Sliding Motor	Hydraulic motor	Running Speed	
	Motor(Kw)	(Kw)	(Kw)	(Kw)	(m/min) 60Hz	
KNLL-6000HW	※ 11Kw x 2	0.2Kwx4	0.1Kwx2	1.5Kw	0.6~1.7m/min	

[💥] The capacity of the motor can be changed depending on the type of waste

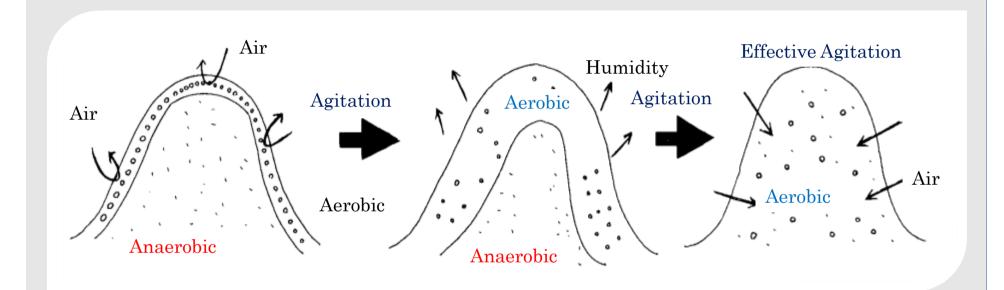
Three factors an efficient compost requires

The 3 FACTORS

1. Ventilation

2.Environment Temperature

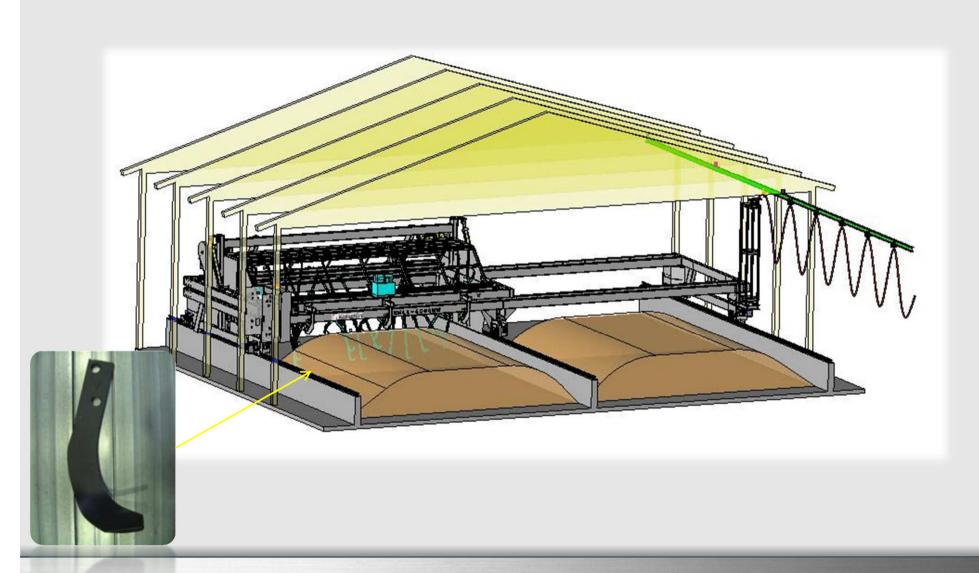
3. Humidity



Three factors an efficient compost requires

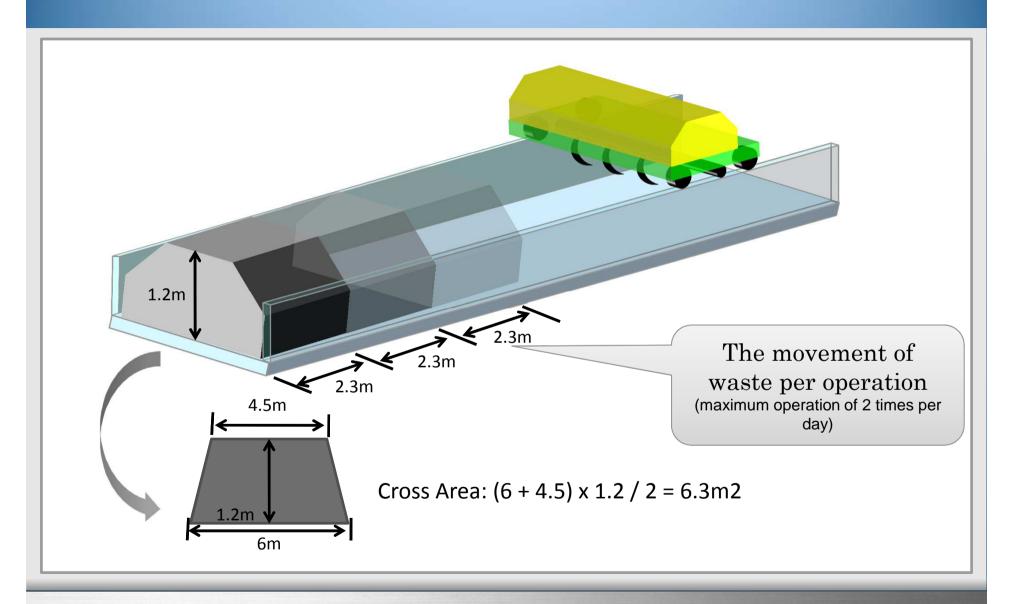
1. Ventilation

Air Requirements



Necessary Air:

120 ~200L air/minute 1m³



Machinery type KNLL-6000HW

KNLL-6000H

An efficient compost depends on three factors

2.Environment Temperature

Temperature Control

The ideal temperature to keep bacteria activated

Minimum Temperature: -5° C Ideal Temperature: $20 - 30^{\circ}$ C

Ensure the green house sides are open in order to have good air circulation.

Close the sides with curtains to adjust the temperature.

Three factors an efficient compost requires

3. Humidity

Steps of processing

Mixing of raw manure with carbon

Placement of humidity adjusted raw manure into the machinery

2

Compost flow process

Raw manure + Carbon

Here comes your footer

Out come after one operation

One week later

Two weeks later

Three weeks later

Final Product

The advantages of utilizing the compost machinery

- 1. Homogeneous final product
- 2. User friendly shape
- 3. Extinction of harmful bacteria and grass seeds
- 4. No smell and poison in final product
- 5. Improvement of soil (Saving chemical fertilizer)

Compost of chicken manure

Compost mix of banana stalk & chicken manure

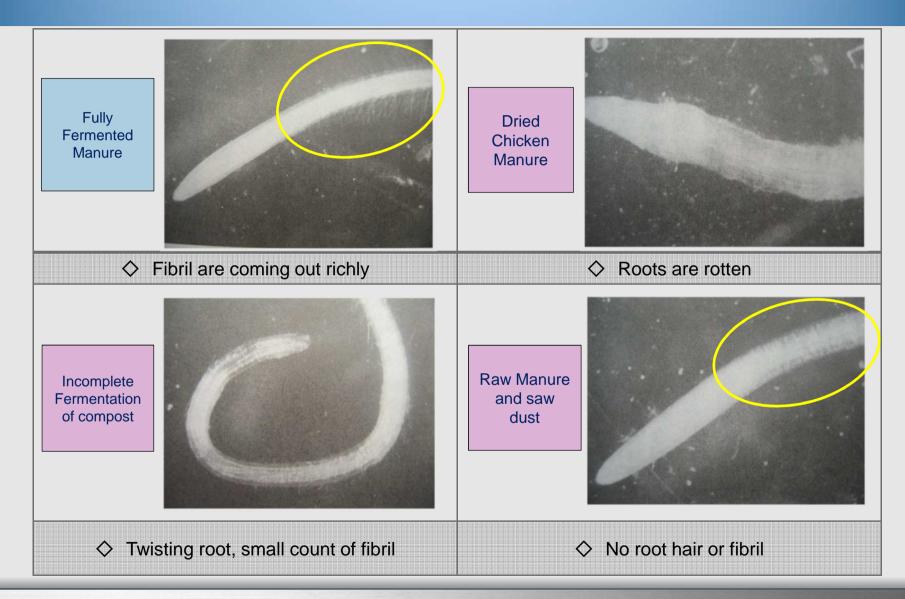
Here comes your footer

Compost of pig excrement

Extinction Time

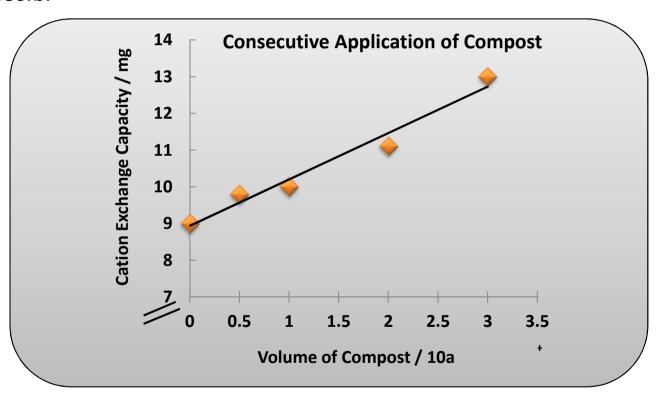
Kohshin machines process over 20 days with 60-70°C; therefore, all Disease and grass seeds will be extinct.

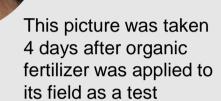
Estinction time of disease germ for human body
And parasite


Species	Temp. (°C)	Time(min.)
Typhoid	55-60	30
Dysentery	55	60
Staphylococci	50	10
Bacillus Coli	55	60
Round Worm (Egg)	60	15-20
Cryptosporidium	60	30
Salmonella	60	20

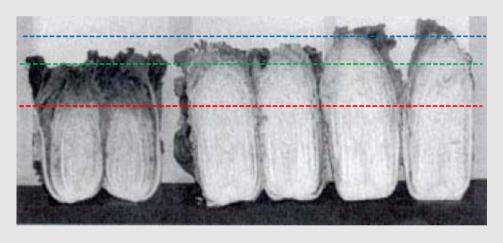
Germination rate of grass seeds (Unit:%)

Species	Less 50°C	60°C (2days)
Crabgrass	96	0
Nobie	72	0
Galingale	56	0
Ooinutade	8	0
Inubiyu	68	0


Roots pictures


Soil improvement

By applying with compost for consecutive years, the cation exchange capacity (CEC) of the soil will increase. Herewith the plus ion will exist NH4 + K + Ca will not drain off in the soil making it easy for plants to absorb.



Why Organic Fertilizer

Results by aplying Organic Fertilizer

Chemical Fertilizer

Organic Fertilizer 2 years

Organic Fertilizer 9 years

(財) 日本土壌協会 専務理事 猪股 敏郎

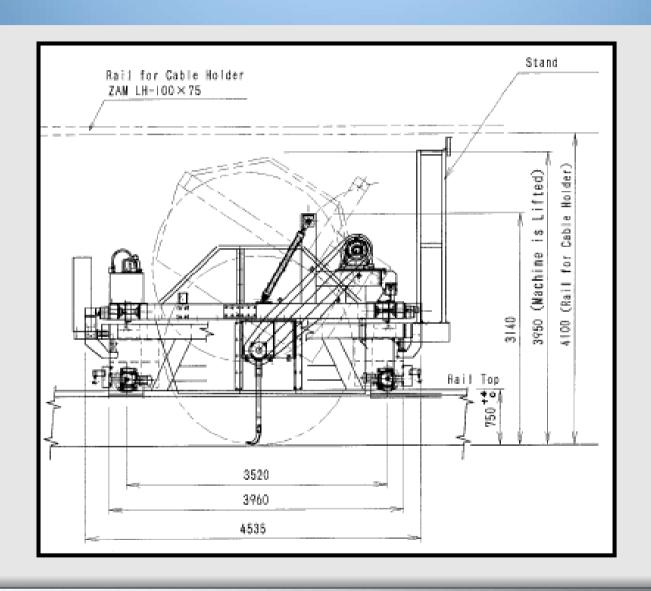
Results by applying organic fertilizer from composter

At this vineyard, the customer applies the end product (organic fertilizer) produced from the composter.

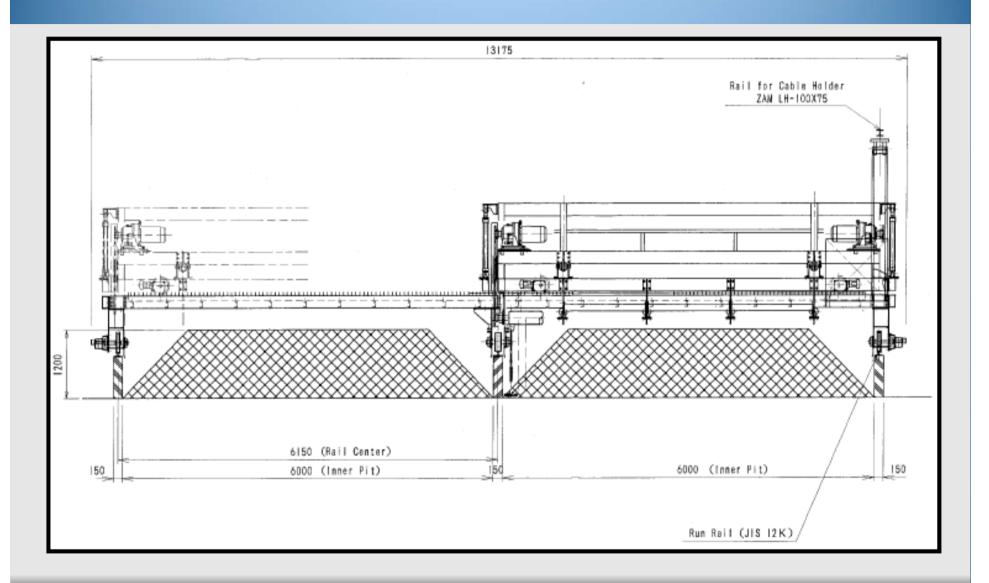
By applying organic fertilizer, the bunch has grown larger than before, and the taste became more sweet.

This year they have succeeded to grow the kernel up to 23mm, which was normally only 18mm till then.

This was the largest grape to be cropped in their country that year.



Price of Compost


Country Name	Price of Organic Fertilizer (US\$/ton)
Bangladesh	100.00 (2009)
Brazil	100.00-120.00(2009)
China	100.00 (2009): 80.00-120.00(2010)
Dominican Republic	80.00 (2008)
Egypt	Dry manure 10.00(2010)
Greece	270.00 (2009) Pelletized and Packaging
India	100.00 (2009)
Indonesia	90.00 (2009)
Malaysia	100.00 (2008,2009)
Mexico	70.00 (2008): 80.00 (2009): 100.00 (2010)
Philippines	220peso/50kg(=USD100/ton) (2010)
Singapore	Compost:40.00 (2009) Dry manure:100.00 (2009)
Thailand	150.00 (2008) with bag

Machinery Drawing

Consumption of electricity and running costs of the Fermentator

KNLL-6000HW (145m)

MOTOR	Kw (No.)	Kw Total	Operation Time	Kwh (2 Times of operation)	
Rotary Motor (Kw)	11 Kw x 2 = 22 Kw				
Running Motor (Kw)	0.2 Kw x 4 = 0.8 Kw	24.5 Kw	22Hrs (2Pit)	380 Kwh/Day	
Sliding Motor (Kw)	0.1Kw x 2 = 0.2 Kw	24.5 KW		occ rumpay	
Hydraulic Motor (Kw)	1.5Kw				

Kwh∕day	Electricity Cost	Electricity Cost /Day
Approx. 380 Kwh/day	380Kwh/day x 90 CLP (Chile)	34.200 CLP(Chile) /day

Integrant

Ingredients that can be found in animal excrement

Raw Manure (Broiler)	7.1	6.38	4.94	15.1	2.07	2.31	4.1	0.74
Dried Manure (Layer)	I	I	_	26.8	6.41	3.01	11.09	1.41
Dried Manure (Broiler)	_	_	_	37.7	5.49	3.41	4.96	1.38
Fermented Manure (Layer)	8.5	8.3	3.2	28.7	6.5	3.5	14.3	2.1
Raw Manure (Pig)								
Fermented Manure (Pig)			3.5		5.6	2.7	8.2	2.4

Note: The above data was base on the data recorded by the Japanese governmet.

But the T-N of fermented manure which is 3.2 was reduced to about 2.0 after 40 days of fermentation after taking an actual test. It also varies depends on the kinds of feeds and the duration of fermentation process.

CEC is the number which shows how much positive ion can Be held in the soil. Positive ion derived from Ca, K, and NK3, can be nutrition. Therefore, higher CEC soil can hold more nutrition.

Difference in yield of tomato and nitrogen maintaining power base on CEC/10a

Field with:	Amount of maintain Nitrogen	Consumable amount of Nitrogen	Yield Tomato
CEC10	$10 \times 0.2 \times 14 = 28 (kg)$	$28 \times 0.7 = 19.6 (kg)$	$19.6 \div 5 = 3.9(t)$
CEC15	$15\times0.2\times14=42(kg)$	$42 \times 0.7 = 29.4 (kg)$	$29.4 \div 5 = 5.9(t)$
CEC20	$20 \times 0.2 \times 14 = 56 (kg)$	$56 \times 0.7 = 39.2 (kg)$	$39.2 \div 5 = 7.8(t)$

0.2: Rate of nitrogen at the CEC

14:1me Nitrogen Amount (Equivalent mg, mg/100g=kg/10a)

0.7=Rate of consumed Nitrogen

5: (kg) of nitrogen is neccesary to harvest 1 ton of tomato

Positive Effect

Left Side: Dried chicken manure Right Side: Fermented chicken

Using raw manure reduces sweetness and soft peel

Taste and color become different

Using fermented chicken manure Increases sweetness and firmer peel

